Poisson Regression
Poisson Regression
When we perform a table analysis, logistic regression and log-linear models are most likely. Logistic regression deal with the ratio of odds but Poisson does the fixed amount as total number observation.
The main regression equation for this model is as follows: $ log \frac{\mu}{N} = \beta X $
Example
This is data about melanoma cases, in other words skin cancers.
mela=read.csv("data/melanoma.csv")
mel=xtabs(cases~age+region, data=mela)
out=glm(cases~age+region, family=poisson,offset=log(total),data=mela)
summary(out)
##
## Call:
## glm(formula = cases ~ age + region, family = poisson, data = mela,
## offset = log(total))
##
## Deviance Residuals:
## 1 2 3 4 5 6 7 8
## 0.4780 -0.4273 -0.5302 0.7469 -1.3610 0.8686 -0.4581 0.3667
## 9 10 11 12
## 0.4279 -0.5932 0.8904 -0.8283
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -10.65831 0.09518 -111.97 <2e-16 ***
## age35-44 1.79737 0.12093 14.86 <2e-16 ***
## age45-54 1.91309 0.11844 16.15 <2e-16 ***
## age55-64 2.24180 0.11834 18.94 <2e-16 ***
## age65-74 2.36572 0.13152 17.99 <2e-16 ***
## age75+ 2.94468 0.13205 22.30 <2e-16 ***
## regionsouth 0.81948 0.07103 11.54 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 895.8197 on 11 degrees of freedom
## Residual deviance: 6.2149 on 5 degrees of freedom
## AIC: 92.44
##
## Number of Fisher Scoring iterations: 4
As the result above shows us, all the estimated parameter are significant.
mu=fitted(out)
cbind(mela[,c(1,2)], cases=rpois(12,mu))
## age region cases
## 1 35-44 south 83
## 2 45-54 south 74
## 3 55-64 south 65
## 4 65-74 south 35
## 5 75+ south 37
## 6 <35 south 47
## 7 35-44 north 77
## 8 45-54 north 87
## 9 55-64 north 104
## 10 65-74 north 59
## 11 75+ north 77
## 12 <35 north 60
2 factors as age groups and regions make 12 different sub-groups. From the estimated values, the number of the expected cases in each group is shown above.
Written on February 29, 2020